Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

1,4-Bis[(1-methyl-1-phenylethyl)peroxymethyl]benzene

Nikodem Kuźnik, ${ }^{\text {a* }}$ Jan Zawadiak, ${ }^{\text {b }}$ Danuta Gilner, ${ }^{\text {b }}$ Angelika Więckol, ${ }^{\text {b }}$ Paweł Wagner ${ }^{\text {b }}$ and Maciej Kubicki ${ }^{\text {c }}$

${ }^{\text {a }}$ Institute of Inorganic Chemistry, Technology and Electrochemistry, Chemistry Department, Silesian University of Technology, Krzywoustego 6, 44-101 Gliwice, Poland, ${ }^{\text {b }}$ Institute of Organic Chemistry and Technology, Chemistry Department, Silesian University of Technology, Krzywoustego 4, 44-101 Gliwice, Poland, and ${ }^{\text {c }}$ Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
Correspondence e-mail: nikodem@zeus.polsl.gliwice.pl

Received 27 May 2002
Accepted 17 July 2002
Online 10 August 2002
The title compound, $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{4}$, is one of the first alkyl bisperoxides to be structurally characterized. The molecule lies on a centre of inversion and therefore the terminal phenyl rings are parallel. Although there are three aromatic rings in the molecule, the $\mathrm{C}-\mathrm{O}-\mathrm{O}-\mathrm{C}$ torsion angle of $163.10(10)^{\circ}$ is close to the value found in $\mathrm{Me}_{3} \mathrm{COOCMe} \mathrm{C}_{3}$.

Comment

Growing interest in fine chemicals has resulted in, inter alia, a rapid development in studies of organic peroxides. These compounds are able both to initiate polymerization processes and to crosslink unsaturated compounds (Sanchez \& Myers, 1996). Recently, work has focused on molecules with several
initiating peroxide and/or azo groups (Hazer, 1997), which may act as precursors for block or graft copolymers. Our previous study has shown that bis-peroxides can be obtained in good yield under phase-transfer-catalysis conditions (Zawadiak et al., 2001). To our surprise, a search of the Cambridge Structural Database (April 2002, Version 1.4; Allen \& Kennard, 1993) indicated only one crystal structure of an alkyl bis-peroxide (bisperoxyacetal; Jefford et al., 1984). We report here the results of the X-ray crystallographic study of 1,4-bis[(1-methyl-1-phenylethyl)peroxymethyl]benzene, (I).

(I)

The molecule of (I) (Fig. 1) is symmetrical, with the central phenyl ring lying on a centre of inversion at $\left(\frac{3}{4}, \frac{3}{4}, \frac{1}{4}\right)$. The $\mathrm{C} 4-$ $\mathrm{O} 1-\mathrm{O} 2-\mathrm{C} 5$ torsion angle of $163.10(10)^{\circ}$ is very close to that found in the simple analogous compound $\mathrm{Me}_{3} \mathrm{COOCMe}_{3}$ [166 (2) ${ }^{\circ}$; Käss et al., 1977]. The $\mathrm{C}-\mathrm{O}-\mathrm{O}-\mathrm{C}$ torsion angles in peroxides span a broad range, from $90.2(6)^{\circ}$ for $\mathrm{H}_{2} \mathrm{O}_{2}$ (Busing \& Levy, 1965) to 180° for peroxides with very bulky groups near the COOC fragment [e.g. $\mathrm{Ph}_{3} \mathrm{COOCPh}_{3}$ (Glidewell et al., 1979) or isopropylphenyl-9-fluorenyl peroxide (Robinson et al., 1999)]. The $\mathrm{O}-\mathrm{O}$ bond distance in the peroxide group of (I) is $1.476(2) \AA(1.480 \AA$ in $\left.\mathrm{Me}_{3} \mathrm{COOCMe}\right)_{3}$. Thus, it seems that the presence of aryl substituents on both sides of the $\mathrm{C}-\mathrm{O}-\mathrm{O}-\mathrm{C}$ group and the absence of methyl substituents on one of its sides have no influence on the geometry of this group in comparison with $\mathrm{Me}_{3} \mathrm{COOCMe} \mathrm{C}_{3}$, or the effects cancel each another out.

Because the environment of each C atom in the $\mathrm{C}-\mathrm{O}-$ $\mathrm{O}-\mathrm{C}$ fragment is different, we also observe different $\mathrm{C}-\mathrm{O}$ bond lengths and angles on each side of the bond. For the

Figure 1
A perspective view of two molecules of (I), connected via weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, which are drawn as dashed lines. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. For clarity, the labels on the symmetry-related part of the molecule have been omitted.
quaternary atom $\mathrm{C} 5, \mathrm{C} 5-\mathrm{O} 2$ is 1.438 (2) \AA and $\mathrm{C} 5-\mathrm{O} 2-\mathrm{O} 1$ is $107.3(1)^{\circ}$, while for the secondary atom $\mathrm{C} 4, \mathrm{C} 4-\mathrm{O} 1$ is 1.430 (2) \AA and $\mathrm{C} 4-\mathrm{O} 1-\mathrm{O} 2$ is $104.3(2)^{\circ}$. The small differences in the geometry of these C atoms, while statistically relevant, are easily explained by the presence of two more relatively bulky methyl groups attached to atom C5. For the same reason, we observe a slight lengthening of the $\mathrm{C}_{\text {alkyl }}-$ $\mathrm{C}_{\text {aryl }}$ bond in the case of the quaternary atom $\mathrm{C} 5[\mathrm{C} 5-\mathrm{C} 8$ 1.522 (2) \AA A in comparison with the secondary atom $\mathrm{C} 4[\mathrm{C} 4-$ C2 1.495 (3) Aㄱ.

The terminal aromatic rings are parallel to each other (by symmetry), and the mean planes of the terminal and central aromatic rings form a dihedral angle of $42.9(1)^{\circ}$. Weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions for $\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{Cg} 1[\mathrm{C}-$ H 0.95 (2), H $\cdots C g 12.84$ (2) and C $\cdots C g 13.480$ (2) Å, and C$\mathrm{H} \cdots C g 1126(1)^{\circ} ; C g 1$ is the centroid of the central ring, $\mathrm{C} 1 /$ $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 1 A / \mathrm{C} 2 A / \mathrm{C} 3 A]$ may, to some extent, control the twisted conformation of the whole molecule. Another weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction is intermolecular, namely $\mathrm{C} 7-$ $\mathrm{H} 73 \cdots C g 2\left(\frac{3}{2}-x, y,-z\right)[\mathrm{C}-\mathrm{H} 0.99$ (2), $\mathrm{H} \cdots C g 22.80$ (2) and $\mathrm{C} \cdots C g 23.785$ (2) \AA, and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cg} 2175(1)^{\circ} ; C g 2$ is the centroid of either terminal aromatic ring, C8-C13 or C8A$\mathrm{C} 13 A$], and this seems to influence the crystal packing. In addition to these, van der Waals interactions also determine the crystal packing.

Experimental

The title compound was obtained from the sodium salt of cumene hydroperoxide and 1,4-bis(bromomethyl)benzene under phase-transfer-catalysis conditions, similar to the method previously described by Zawadiak et al. (2001). The detailed synthetic procedure, together with a description of the thermal behaviour of the compound, will be published elsewhere. Appropriate crystals of (I) were obtained by crystallization from a solution in ethanol. The crystals were stored in a fridge in order to limit the slow decomposition of (I) at room temperature.

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{4}$
$M_{r}=406.50$
Monoclinic, $I 2 / a$
$a=15.368(3) \AA$
$b=6.2200(12) \AA$
$c=23.142(5) \AA$
$\beta=90.44(3)^{\circ}$
$V=2212.1(8) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.221 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 94 \\
& \quad \text { reflections } \\
& \theta=3.2-16.7^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=295 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.4 \times 0.3 \times 0.2 \mathrm{~mm}
\end{aligned}
$$

Data collection

Kuma KM-4 diffractometer

$$
h=-18 \rightarrow 18
$$

$\omega / 2 \theta$ scans
$k=0 \rightarrow 7$
2007 measured reflections
1951 independent reflections
1198 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.012$
$\theta_{\text {max }}=25.1^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.092$
$S=1.01$
1951 reflections
197 parameters
All H-atom parameters refined
$l=0 \rightarrow 27$
3 standard reflections every 100 reflections intensity decay: 0.6%

The choice of the non-standard space group $I 2 / a$ (instead of $C 2 / c$) was as a result of the large value of the β angle in the latter case [123.29 (1) ${ }^{\circ}$].

Data collection: KM-4 Software (Kuma, 1991); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1111). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Busing, W. R. \& Levy, H. A. (1965). J. Chem. Phys. 42, 3054-3059.
Glidewell, C., Liles, D. C., Walton, D. J. \& Sheldrick, G. M. (1979). Acta Cryst. B35, 500-502.
Hazer, B. (1997). Macrointermediates for Block and Graft Copolymers. In Handbook of Engineering Polymeric Materials, edited by N. P. Cheremisinoff, p. 725. New York: Marcel Dekker, Inc.
Jefford, C. W., Bernardinelli, G. \& McGoran, E. C. (1984). Helv. Chim. Acta, 67, 1952-1956.
Käss, D., Oberhammer, H., Brandes, D. \& Blaschette, A. (1977). J. Mol. Struct. 40, 65-75.
Kuma (1991). KM-4 User's Guide. Version 5.0. Kuma Diffraction, Wrocław, Poland.
Robinson, P. D., Hou, Y. \& Meyers, C. Y. (1999). Acta Cryst. C55, IUC9900147.
Sanchez, J. \& Myers, T. N. (1996). Peroxide Initiators. In Polymeric Materials Encyclopaedia, Vol. 7, edited by J. C. Salomone, p. 4927. New York: CRC Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zawadiak, J., Danch, M. \& Pigulla, M. (2001). Monatsh. Chem. 132, 821-824.

